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Abstract
The influence of time-dependent control parameters on time-delayed feedback
schemes for control of chaos is investigated by analytical means. For the logistic
map the linear stability of the period-two orbit subjected to a modulated time-
delayed feedback loop is calculated. We find enhanced control performance
due to phase lags between the periodic orbit and the controller.

PACS numbers: 05.45.Gg, 02.30.Ks, 05.45.Xt

1. Introduction

Although control of chaos by time-delayed feedback has been introduced more than one decade
ago [1] it is still one of the most active fields in applied nonlinear science [2]. Several variants
of the original time-delayed feedback scheme have been proposed to improve the control
performance. Among those are schemes employing multiple delays to stabilize strongly
unstable orbits [3] or schemes using modulation of the control parameters with a period
different from the periodic target state [4, 5] to overcome the so-called odd number limitation
from which time-delayed feedback control suffers [6]. It has been reported recently that time-
dependent modulation improves the control performance in autonomous systems by several
orders of magnitude [7, 8]. Whereas in autonomous systems the phase of a periodic target
state does not play a significant role, a phase selection mechanism may take place when a
time-dependent control loop is applied. Thus removing the Goldstone mode of the original
dynamics the control performance may be enhanced. We study the very basic nature of this
mechanism with analytic tools by investigating the simplest time discrete model subjected to
time-delayed feedback control. Applying standard linear stability analysis we discuss in detail
the change in control performance induced by the external time–dependence of the control
loop.
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2. Modulated control of the logistic map

Consider the logistic map subjected to time-delayed feedback control for stabilizing a periodic
orbit of period p. The equation of motion reads

xn+1 = 1 − µx2
n + Kn(xn − xn−p). (1)

Whereas the original Pyragas scheme corresponds to a fixed value of the control amplitude
Kn ≡ K , we are considering here the influence of a time-dependent parameter having the
same period as the target state, Kn = Kn+p. We are investigating the simplest nontrivial
case3 p = 2, i.e. control of the period-two orbit x∗

0/1 = (1 ± √
4µ − 3)/(2µ). The periodic

modulation of the control amplitude reads K2� = K0,K2�+1 = K1. It is already obvious that
for such a choice the phase of the orbit matters. Whereas for the plain logistic map the ‘two’
orbits x∗

0 , x∗
1 , x∗

0 , x∗
1 , . . . and x∗

1 , x∗
0 , x∗

1 , x∗
0 , . . . are identical, the initial phase enters the

control problem since the control amplitude Kn is time dependent.
For the theoretical analysis we resort to linear stability analysis. For that purpose we

rewrite equation (1) as a first-order difference equation of higher dimension. Introducing
z

n
= (

z(0)
n , z(1)

n , z(2)
n

) = (xn, xn−1, xn−2) equation (1) reads

z
n+1 = FKn

(z
n
) =




fKn

(
z(0)
n , z(2)

n

)
z(0)
n

z(1)
n


 (2)

where

fK(x, x ′) = 1 − µx2 + K(x − x ′) (3)

denotes the right-hand side of equation (1). The period-two orbit z∗
0 = (x∗

0 , x∗
1 , x∗

0 ), z∗
1 =

(x∗
1 , x∗

0 , x∗
1 ) is of course determined by the fixed point of the second iterate of the map (2),

where the two different choices FK1

(
FK0(z)

)
and FK0

(
FK1(z)

)
correspond to opposite phases

between the orbit and the control loop. Thus the stability properties of the orbit may depend
on the phase. It is of course sufficient to analyse one case, e.g. FK1

(
FK0(z)

)
, since the other

choice is just obtained by interchanging the values of K0 and K1 in the final result.
Linearization of the equation of motion (2) results in the Jacobian matrix

D
(
FK1 ◦ FK0

)
(z∗

0) =

∂1fK1∂1fK0 ∂2fK1 ∂1fK1∂2fK0

∂1fK0 0 ∂2fK0

1 0 0


 (4)

where

∂�fK1 := ∂�fK1(fK0(x
∗
0 , x∗

0 ), x∗
1 ) = ∂�fK1(x

∗
1 , x∗

1 )

∂�fK0 := ∂�fK0(x
∗
0 , x∗

0 )
(5)

and ∂� denotes the derivative with respect to the �th argument. The characteristic equation
determining the stability of the target state is obtained from the matrix (4) as

0 = λ3 − λ2(−2µx∗
1 + K1)(−2µx∗

0 + K0)

+ λ(K0(−2µx∗
1 + K1) + K1(−2µx∗

0 + K0)) − K0K1

= λ3 + λ2(−1 + K0 + K1 − K0K1 + z(K1 − K0) + z2)

+ λ(−K0 − K1 + 2K0K1 + z(K0 − K1)) − K0K1 (6)

3 In our model the time-dependent modulation does not matter for fixed points. Only the time average will determine
the stability.
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Figure 1. Control domain for plain time-delayed feedback control of the period-two orbit of
the logistic map. (PD) (full line): boundary caused by period doubling (cf equation (8)), (H2.1)
(broken line): boundary caused by Hopf instability (cf equation (9)). The hatched area indicates
the stable domain. For parameter values z2 < 2 (i.e. below the dotted line) there is no need for
control since the free system K = 0 already has a stable period-two orbit.

where the abbreviation z := √
4µ − 3 contains the dependence on the parameter of the map.

Obviously the characteristic equation is asymmetric in K0 and K1 reflecting the possible
preference of a particular phase. For successful control all eigenvalues λ must be smaller than
one in modulus. The Jury criterion (cf the appendix) yields necessary and sufficient conditions
for stability.

3. Linear stability analysis of the control problem

Instead of using the control amplitudes K0 and K1, it is more convenient to introduce the mean
value and the amplitude of the modulation

κ = 1
2 (K0 + K1) � = 1

2 (K1 − K0). (7)

Evaluating the stability using equation (6) and the Jury criterion (cf the appendix) is
straightforward. Before dwelling on the general case we first summarize the results for
the original time-delayed feedback scheme without modulation.

For K0 = K1 = K , i.e. � = 0 and κ = K the saddle node criterion (A.2) yields
z2 = 4µ − 3 > 0, which is always satisfied for parameter values where the period-two orbit
exists. The criterion indicating period doubling bifurcations, equation (A.3), reads

z2 = 4µ − 3 < (2K − 1)2 + 1. (8)

The first Hopf criterion (A.4) yields the constraint K2 < 1. Thus the control amplitude may
be limited from the very beginning to the domain |K| < 1. The second Hopf criterion (A.5)
yielding the two inequalities (A.6) and (A.7) finally leads to the constraints

z2 = 4µ − 3 < (2K + 1)(1 − K2)/K2 (9)

and

z2 = 4µ − 3 > −(2K2 − 2K + 1)(1 − K2)/K2. (10)

Since the right-hand side of equation (10) is negative in view of the constraint |K| < 1, the
inequality (10) does not yield a condition for the control domain. Thus we just need to consider
the inequalities (8), (9), |K| < 1, and z2 = 4µ − 3 > 0. Figure 1 summarizes the results of
our analysis. We obtain a ‘lower’ control threshold caused by a period doubling bifurcation
and an ‘upper’ threshold through a Hopf instability. The control domain shows for z2 > 2 the
typical triangular shape (cf figure 1, the part of the hatched area above the dotted line), which
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Figure 2. Control domain for modulated time-delayed feedback control of the period-two orbit
of the logistic map (cf figure 1). (PD) (full line): boundary caused by period doubling (cf
equation (11)), (H2.1) (broken line): boundary caused by Hopf instability (cf equation (13)). The
hatched area indicates the stable domain. Parameter values z2 < 2 (i.e. below the dotted line) yield
stable period-two orbits even without control. Plots in the same row correspond to opposite phase
lags.

is known from general considerations on time-delayed feedback control [9]. In particular,
control fails if the Lyapunov exponent of the unstable orbit ln |z2 − 1| becomes too large.

Let us now investigate how the control properties change when a modulation of finite
amplitude � is applied. For that purpose we evaluate the stability criteria (A.2), (A.3),
(A.4), (A.6) and (A.7) for the polynomial (6). The condition on the saddle node bifurcation
(A.2) again results in z2 = 4µ − 3 > 0. The period doubling constraint (A.3) yields
(cf equation (8))

(z + 2�)2 < (2κ − 1)2 + 1. (11)

The first Hopf condition (A.4) leads to

(κ2 − �2)2 < 1. (12)
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Finally the second type of Hopf constraint, equations (A.6) and (A.7), results in
(cf equation (9))

(κ2 − �2)z2 − 2�(1 − κ2 + �2)z < (2κ + 1)(1 − κ2 + �2) (13)

and (cf equation (10))

(κ2 − �2)z2 − 2�(1 − κ2 + �2)z > −(2κ2 − 2κ + 1 − 2�2)(1 − κ2 + �2). (14)

It is not easy to spot the influence of the modulation � on the stability diagram. Concerning
the period doubling threshold (11) the modulation shifts the boundary in vertical direction so
that for negative � an increase of control performance is expected. We recall that different
signs of � just correspond to the two different phase lags between the orbit and the control
loop. For the boundaries generated by Hopf instabilities no such simple dependence can be
obtained from equations (13) and (14). Figure 2 contains control diagrams for different values
of the modulation amplitude. As in the case without modulation only the conditions (11) and
(13) determine the control boundaries. Negative amplitudes increase the control domain till
finally the period doubling constraint disentangles from the Hopf condition at about � ≈ −0.6.
For smaller � values the control domain decreases again. An additional boundary appears
at small values of z2 = 4µ − 3, which is caused by the second root of the period doubling
constraint (11). This boundary shifts upwards if � is decreased. In conclusion, there exists
an optimal value for the modulation amplitude. Above all a remarkable change of the size of
the control domain is observed for � values with different sign expressing the preference of a
particular phase lag.

4. Conclusion

As shown by the previous analysis, modulated time-delayed feedback control enhances the
control performance of autonomous systems. As time-dependent modulation breaks the time
translation invariance, certain phase lags between the periodic orbit and the controller are
selected due to enhanced stability properties. In our particular model the period-two orbit,
which according to the plain time-delayed feedback method can be stabilized in a limited
parameter range only, becomes accessible for control in much larger parameter domains. As
a modulation of control parameters is trivial to implement in experimental set-ups the method
looks promising from the point of view of applications.

Our analysis can be carried out for higher periodic orbits as well. We expect a similar
influence of phase lags on the control performance but the full analytical discussion becomes
quite tedious even if one sticks to simple one-dimensional maps. In addition, one has to keep
in mind that control of orbits with high periods may call for extended control schemes [3]
because of the limitations mentioned above.

Modulated control selects a particular phase lag of the target state. Thus the control
method may be also feasible for phase locking and enhancement of synchronization between
different subsystems. Of course such advanced topics require the investigation of model
systems which are far beyond our simple toy example.

We expect that our results show some generic features of modulated time-delayed feedback
control. As the influence of modulated control already shows up in first order when a
perturbation expansion in terms of the modulation amplitude is applied4, the sign of the
modulation amplitude matters. Thus the control performance is either suppressed or enhanced
depending on the sign of the phase lag between the orbit and the controller. But general
properties of the control scheme including global features are of course difficult to predict at
the current stage.
4 The first order vanishes when some symmetry properties are met like e.g. for control through eigenmodes (cf [7]).
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Appendix. Jury criterion

For the linear stability of a general time-discrete dynamical system all the roots of the
characteristic equation

P(λ) = a0 + a1λ + · · · + aNλN = 0 (A.1)

must be contained in the unit circle, |λ| < 1. Decades ago a necessary and sufficient criterion
for such a condition has been derived by Schur and Cohn [10] and then further simplified
by Jury [11]. It is quite well established in the engineering context but hardly referenced
in the physics literature. In fact, the conditions on the coefficients for general N are quite
cumbersome and we just confine here to the case N = 3. Assuming without loss of generality
a3 > 0 the Jury criterion reads

(SN) : P(1) = a0 + a1 + a2 + a3 > 0 (A.2)

(PD) : P(−1) = a0 − a1 + a2 − a3 < 0 (A.3)

(H1) : a3 > |a0| (A.4)

(H2) :
∣∣a2

3 − a2
0

∣∣ > |a1a3 − a0a2|. (A.5)

If one looks at the borderline cases, i.e. when one of the inequalities becomes an identity, then
an instability in the corresponding dynamical system takes place. Condition (SN) implies that
a root λ = 1 appears, i.e. a saddle node bifurcation happens, whereas relation (PD) states
that λ = −1 solves the characteristic equation causing a period doubling bifurcation. Each
of the two remaining cases (H1) and (H2) corresponds to a complex conjugated pair on the
unit circle indicating a Hopf bifurcation. Condition (A.5) may be simplified further taking the
inequality (A.4) into account,

(H2.1) : a2
3 − a2

0 > a1a3 − a0a2 (A.6)

(H2.2) : a2
3 − a2

0 > a0a2 − a1a3. (A.7)

There exists a simple link between the Jury criterion and the Hurwitz criterion [12], which
is more common in the physics literature and which applies to time continuous systems. If

Q(σ) = b0σ
N + b1σ

N−1 + · · · + bN (A.8)

denotes the characteristic polynomial, where b0 > 0, then the necessary and sufficient
condition for all roots σ having negative real part can be expressed in terms of inequalities for
determinants

H1 = b1 > 0 H2 =
∣∣∣∣b1 b3

b0 b2

∣∣∣∣ > 0 H3 =
∣∣∣∣∣∣
b1 b3 b5

b0 b2 b4

0 b1 b3

∣∣∣∣∣∣ > 0, . . . HN > 0

(A.9)

where all matrix elements bn>N have to be replaced by zero. The Hurwitz criterion is much
simpler to formulate for general N than the Jury criterion. In fact, both criteria can be related
to each other. Noting that

λ = (1 + σ)/(1 − σ) (A.10)
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yields a conformal mapping from the left half complex plane to the inner of the unit circle we
can rewrite equation (A.1) as a polynomial to which the Hurwitz criterion can be applied

0 = (1 − σ)NP

(
1 + σ

1 − σ

)

= a0(1 − σ)N + a1(1 − σ)N−1(1 + σ) + · · · + aN(1 + σ)N . (A.11)

But even this approach becomes quite cumbersome for general N.
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